Diagnosis & Management of NSTE-ACS

DR. YU HO, CHAN POK OI HOSPITAL

Outlines:

- key diagnostic steps for patients with suspected acute coronary syndrome (ACS) to optimize initial triage and early management.
- Describe management strategy for a patient with confirmed unstable angina/non-ST-segment elevation myocardial infarction (UA/NSTEMI)
- Problem based approach discussion

ACS is a clinical diagnosis based on three parameters:

- 1) Ischemic symptoms e.g. SOB, chest pain
- 2) ECG findings
- 3) The presence of myocardial necrosis e.g. imaging, troponins

Introduction

► STEMI

- persistent ST-segment elevation on a 12-lead ECG,
- posterior -lead ST-segment elevation
- or new left bundle branch block (LBBB)

► NSTEMI :

- In the absence of ST-segment elevation or new LBBB on ECG, evidence of myocardial necrosis, as indicated by an elevation of circulating cardiac biomarkers, is consistent with a diagnosis of NSTEMI.
- Biomarker-negative ACS defines UA

Case 1:

A 66-year-old woman with a 2-day history of intermittent chest pain, presents to the emergency department for evaluation. PHx: hypertension, DM. Her medications include amlodipine, hydrochlorothiazide, and aspirin.

- ▶ BP 130/80 mm Hg, HR 80 bpm, and SpO2 99% on room air. Normal cardiovascular examination.
- ▶ ECG shows normal sinus rhythm with nonspecific T-wave changes.
- Chest x-ray is normal.
- Laboratory values include two serial troponin I values of <0.01 ng/L, normal electrolytes, Ddimer 130 ng/ml, and normal blood cell count, hba1c 6.7 mmol/L

Which of the following is most appropriate in her care?

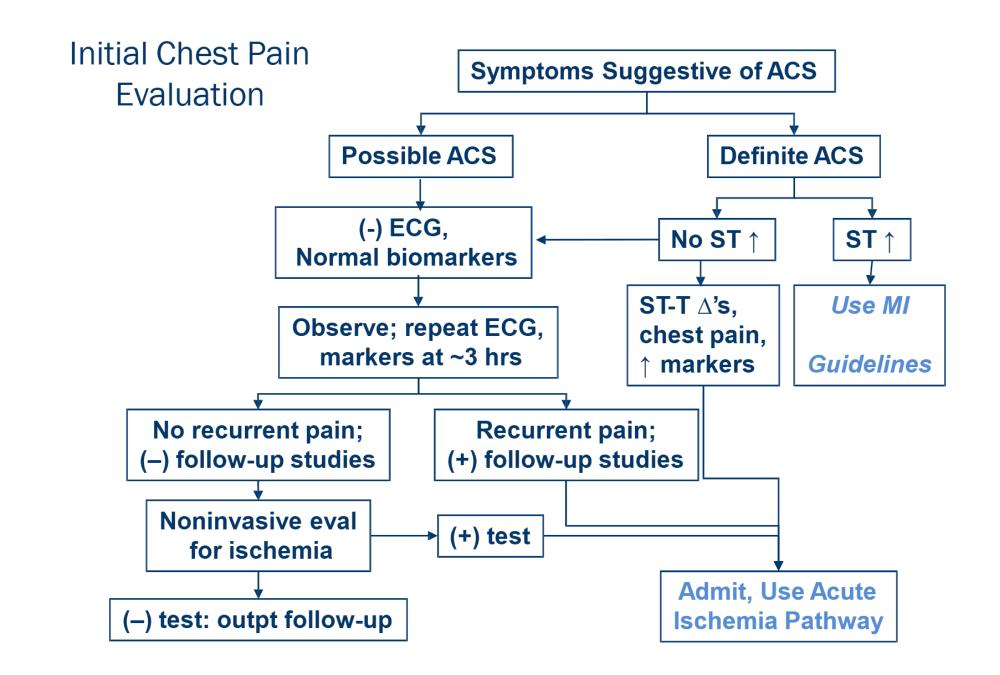
- A) No further test is needed
- B) Invasive coronary angiography
- C) Exercise myocardial perfusion
- D) V/Q scan
- E) Echocardiogram
- F) Repeat Troponin

This patient has chest pain and suspected non-STsegment elevation acute coronary syndrome.

Initial Hospital Assessment

TWO Questions

DiagnosisRisk assessment


Diagnosis ?

Likelihood That Signs and Symptoms Represent an Acute Coronary Syndrome Secondary to CAD*

Feature	High Likelihood Any of the following:	Intermediate Likelihood Absence of high-likelihood features and presence of any of the following:	Low Likelihood Absence of high- or intermediate-likeli- hood features but may have:
History	Chest or left arm pain or discomfort as chief symptom reproducing prior documented angina Known history of CAD, including MI	Chest or left arm pain or discomfort as chief symptom Age >70 years Male sex Diabetes mellitus	Probable ischemic symptoms in absence of any of the intermediate likelihood characteristics Recent cocaine use
Examination	Transient MR murmur, hypotension, diaphoresis, pulmonary edema, or rales	Extracardiac vascular disease	Chest discomfort reproduced by palpation
ECG	New, or presumably new, transient ST-segment deviation (≥1 mm) or T-wave inversion in multiple precordial leads	Fixed Q waves ST depression 0.5 - 1 mm or T-wave inversion >0.1 mm	T-wave flattening or inversion <1 mm in leads with dominant waves Normal ECG
Cardiac markers	Elevated cardiac Tnl, TnT, or CK-MB	Normal	Normal

High-sensitivity troponin

- Improve the overall diagnostic accuracy for ACS compared with older assays and, in particular, may accelerate the diagnosis to up to 3 hours from symptom onset
- Stable angina without ACS, the use of a high-sensitivity troponin T assay tested "positive" (i.e., above the 99th percentile) in 11.1% of patients
- Other conditions leading to myocardial necrosis include myocardial trauma, heart failure, stress cardiomyopathy (Takotsubo), pulmonary embolism, myocardial inflammation or infiltration, and drug toxicity.

Definition of Myocardial Infarction

Criteria for Acute Myocardial Infarction

The term acute myocardial infarction (MI) should be used when there is evidence of myocardial necrosis in a clinical setting consistent with acute ML Under these conditions any one of the following criteria meets the diagnosis for MI:

Detection the rise and/or fall of cardiac biomarker values [prefer ably cardiac troponin (cTn)] with at least one value above 99th percentile upper reference mine (one) and with at least one of the following:

- Symptoms of ischaemia.
- New or presumed new significant ST–T changes or new LBBB.
- Development of pathological Q waves in the ECG.
- Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality.
- Identification of an intracoronary thrombus by angiography or autopsy.

What should we do for low to intermediate likelihood of ACS?

- Noninvasive testing with treadmill ECG
- stress myocardial perfusion imaging (MPI)
- stress echocardiography can be pursued before discharge or within 72 hours of discharge following normal serial ECGs and cardiac troponins.

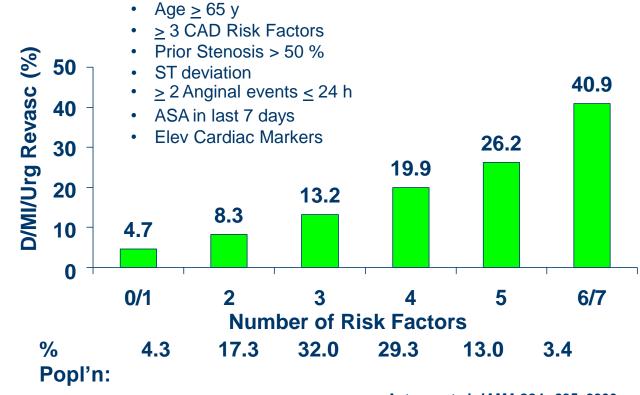
Can we use CTA ?

Cardiac Computed Tomography Angiogram

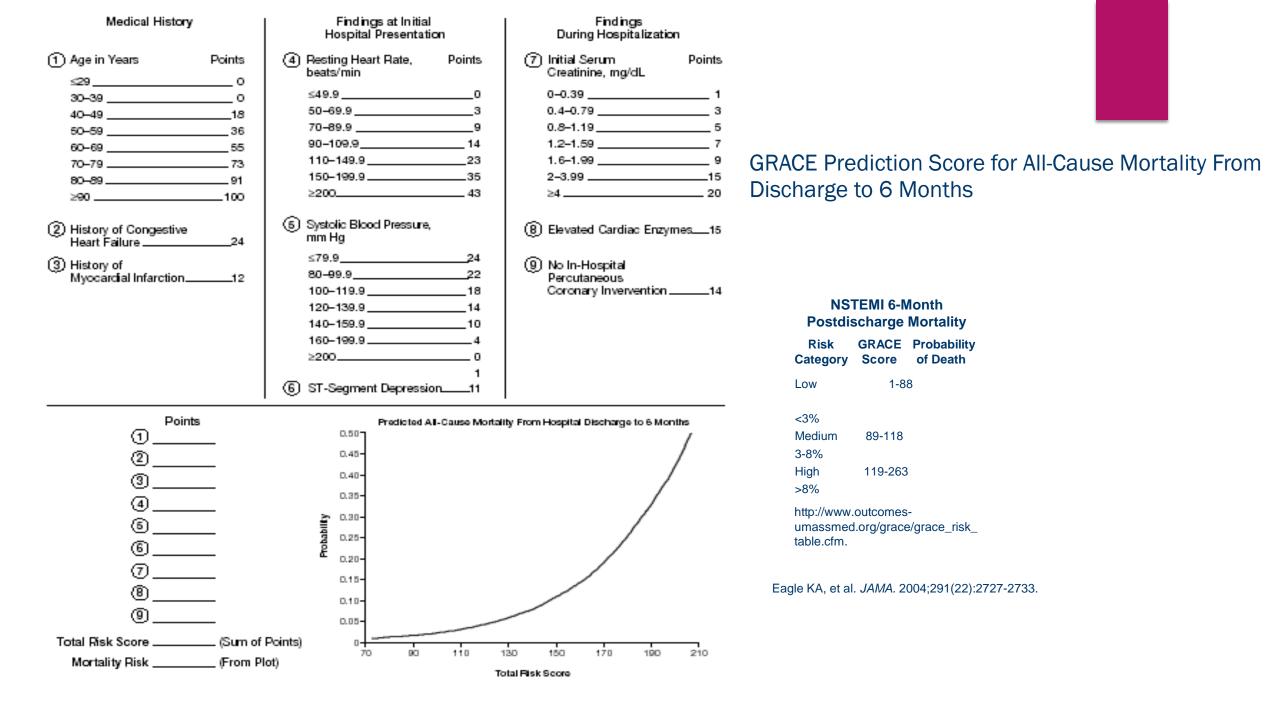
- Excellent negative predictive value (>90%)
- An acceptable approach to consider for the exclusion of CAD (Level of Evidence B)
- the positive predictive value is lower (80%)
- ROMICAT II: good negative predictive value for ACS and similar 28-day rates of major adverse cardiovascular events

Cardiovascular Magnetic Resonance

Delayed-enhancement (DE)-CMR is a highly accurate and well-validated technique to detect myocardial scar and is very sensitive for detecting small or subendocardial infarcts.


Risk assessment ?

Risk Assessment and Risk Stratification


 Early risk assessment should focus on the clinical exam (history and physical examination), ECG findings, and cardiac markers

► TIMI or GRACE risk scores

TIMI Risk Score For UA/NSTEMI

Antman et al *JAMA 284* : 835, 2000

Answer is : C: Stress test

- This patient's Thrombolysis in Myocardial Infarction (TIMI) risk score is 2, which gives her a risk of major adverse cardiac events of 8% in the next 14 days.
- ▶ Noninvasive stress testing can be used to further risk stratify this patient.
- Resting transthoracic echocardiogram will not provide information about inducible ischemia.
- With a normal D-dimer and low pretest probability of pulmonary embolism, a V/Q scan is not indicated.

Question 2:

- A 69-year-old man with a history of hypertension and stroke was admitted with a non–STsegment elevation myocardial infarction (NSTEMI). PE: chest lung field, normal heart sound, no murmur, Sp02 95%
- What general measures should not be considered ?
 - A. Aspirin
 - B. Beta-blocker
 - C. Oxygen
 - D. ACEI/ARB
 - E. Aldactone

General measures

- Oxygen therapy is currently recommended only for patients with
 - ▶ Hypoxemia (defined as an oxygen saturation <90%) or
 - respiratory distress

- DETO2X-AMI / AVOID trial
 - increased infarct size in normoxic patients with STEMI treated with the addition of supplemental oxygen

Which of the following general medication you would not consider?

- a) IV TNG infusion
- b) Concor
- c) Adalat
- d) Zestril
- e) Aldactone
- f) Lipitor

Medical Therapy

Beta-blockers

- inhibition of beta-1 adrenergic receptors in the myocardium, thereby leading to a reduction in cardiac work and myocardial oxygen demand
- reduces myocardial ischemia, reinfarction, and ventricular arrhythmias, and improves long-term survival.³
- should be initiated within 24 hours (Class I).

C/I: signs of heart failure, a low-output state, high risk for cardiogenic shock (including age >70 years, heart rate >110 bpm, systolic blood pressure <120, or late presentation), significant heart block (PR interval >240 msec, second- or third-degree heart block without a pacemaker), or active bronchospasm secondary to asthma or reactive airway disease

The 2014 AHA/ACC Guideline for the Management of With Non-ST Elevation Acute Coronary Syndromes caution about the early use of intravenous beta-blockers in patients at risk for shock based on the findings from the <u>COMMIT</u> (ClOpidogrel and Metoprolol in Myocardial Infarction Trial) study in patients with STEMI (Class III).³

- Nitrates (class Ib for persistent ischemia, HF, HT)
 - reduces cardiac preload and wall tension
 - arterial vasodilation may decrease afterload and oxygen demand
 - No survival evidence

Contraindications : hypotension (systolic blood pressure <90 mm Hg or a drop of ≥30 mm Hg from baseline) or recent phosphodiesterase inhibitor use.

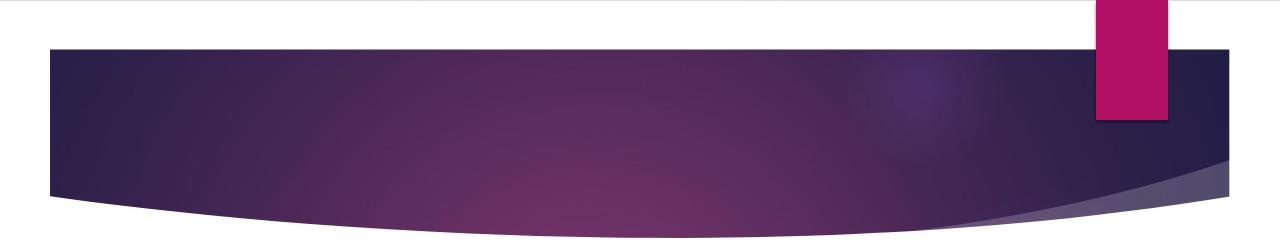
Calcium channel blockers

- mainly limited to symptom control without a clear reduction in acute or longterm mortality
- immediate-release nifedipine has been shown to be associated with an increased risk of death in patients with CAD and ACS and therefore should be avoided. (3)
- CCBs are a first-line therapy for variant angina (Prinzmetal's angina)

Analgesia

Morphine

- morphine may delay the pharmacodynamic effects of antiplatelet therapy in patients with STEMI, possibly through a delay in intestinal absorption. Class lib
- Nonsteroidal anti-inflammatory drugs (Class III)
 - block endothelial prostacyclin production and can lead to platelet aggregation via thromboxane A2-dependent pathways
 - recurrent cardiovascular events and mortality with NSAID use following ACS


Cholesterol Management

Statin

- high-intensity statin therapy
- may reduce periprocedural MIs when administered prior to PCI and may also reduce contrast-induced nephropathy

Ezetimibe

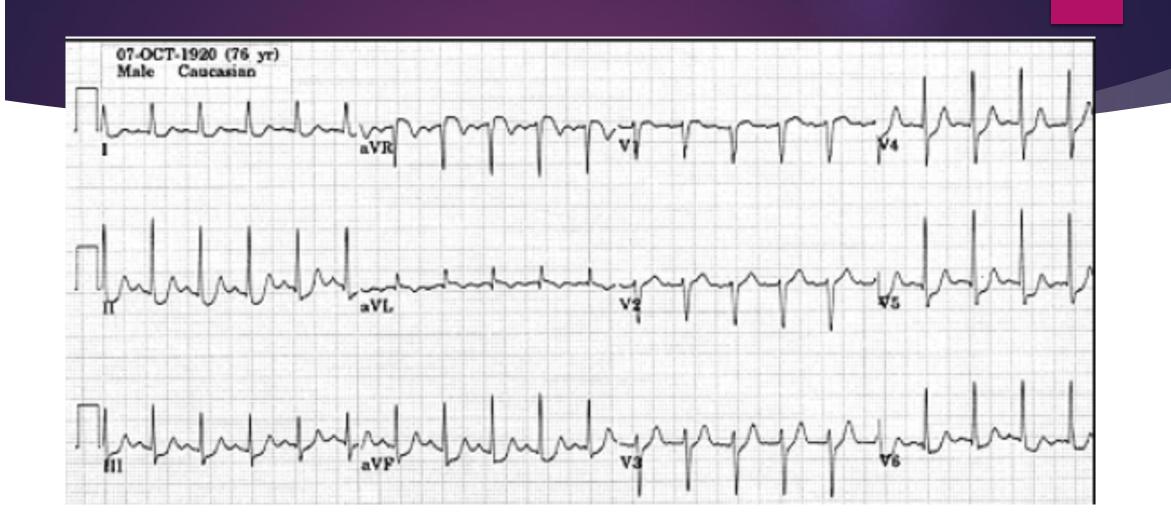
- PCSK9 Inhibitors
 - evolocumab and alirocumab

Renin-Angiotensin-Aldosterone System Inhibitors

- angiotensin-converting enzyme (ACE) inhibitors, angiotensin-receptor blockers (ARBs), and aldosterone antagonists,
- reduce risk of death when patients with LV dysfunction were treated in the early post-MI period in the <u>ISIS-4</u> (Fourth International Study of Infarct Survival), <u>SAVE</u> (Survival and Ventricular Enlargement) and <u>VALIANT</u> (Valsartan in Acute Myocardial Infarction) trials.

- Aldosterone antagonist (Class IA)
 - ► Eplerenone
 - an adjunct to ACE inhibitors and beta-blockers in post-MI patients with LV dysfunction and symptomatic heart failure in the <u>EPHESUS</u>

is recommended in patients post–MI without significant renal dysfunction (creatinine >2.5 mg/dL in men or >2.0 mg/dL in women) or hyperkalemia (K >5.0 mEq/L) who are receiving therapeutic doses of ACE inhibitor and beta blocker and have a LVEF 0.40 or less, diabetes mellitus, or HF



► ACE inhibitors or ARBs (class IA)

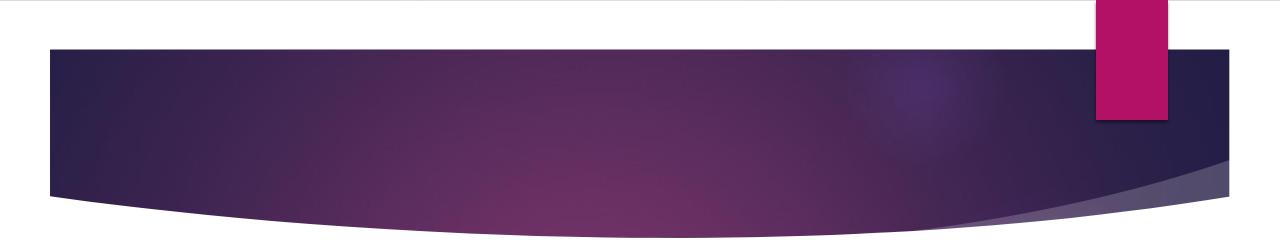
- be started or continued in patients with ACS and LV dysfunction and/or those with hypertension, diabetes mellitus, or stable chronic kidney disease (Class I),
- may be considered in all other patients with cardiac or vascular disease (Class IIa)

Case 3:

- 68/F with hypertension
- No other cardiac history, no DM
- Intermittent chest pain (typical) for 6 hour
- P/E: BP 95/60 mmHg, HR 114 bpm , BW 50kg
- Basal crepitation, Cr 130
- Initial troponin I is 4000 ng/L

Which statement is true about initial risk stratification?

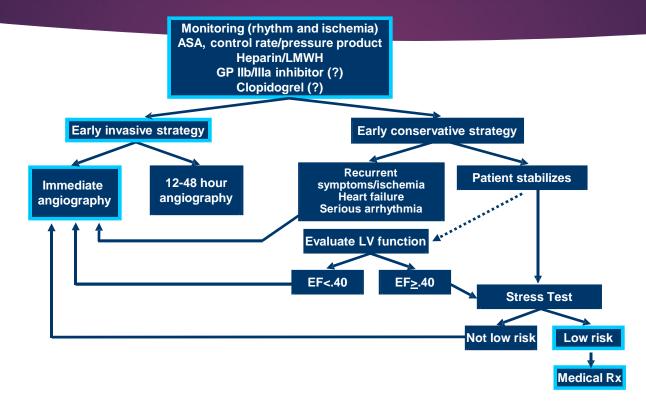
- A. She has CHF
- B. Because her TIMI risk score is 3, she is at intermediate risk
- c. The troponin elevation could be due to her renal insufficiency
- D. She is at very high risk for poor outcome
- E. None of above


Which statement do you most agree with?

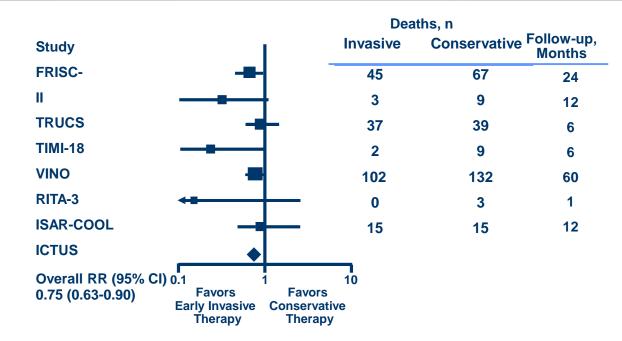
- A. Because of her age and renal insufficiency, an initial trial of conservative therapy is prudent.
- B. Because of her high risk status, an initial invasive approach is preferred
- C. She should undergo 48-72 hours of "cooling off" followed by elective cath
- D. Any of these strategies is appropriate
- E. None of above

Invasive Versus Ischemia-Guided (Conservative) Strategies

Factors Associated With Appropriate Selection of Early Invasive Strategy or Ischemia-Guided Strategy in Patients With Non-ST-Segment Elevation-Acute Coronary Syndrome

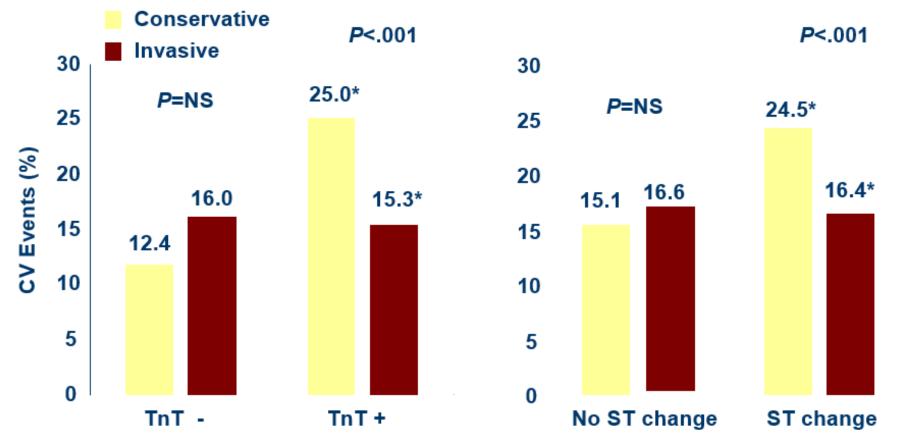

Immediate Invasive	Refractory angina
(within 2 h)	Signs or symptoms of HF or new or worsening mitral regurgitation
	Hemodynamic instability
	Recurrent angina or ischemia at rest or with low-level activities despite intensive medical therapy
	Sustained VT or VF
lschemia-guided strategy	Low-risk score (e.g., TIMI [0 or 1], GRACE [<109]) Low-risk Tn-negative female patients
	Patient or clinician preference in the absence of high-risk features
Early Invasive (within 24 h)	None of the above, but GRACE risk score >140 Temporal change in Tn
	New or presumably new ST depression
Delayed invasive (within 25-72 h)	None of the above but diabetes mellitus Renal insufficiency (GFR <60mL/min/1.73m²)
	Reduced LV systolic funstion (EF <0.40)
	Early postinfarction angina
	PCI within 6 months
	Prior CABG
	GRACE risk score 109 -140; TIMI score ≥2

- Routine invasive strategy is generally superior to an ischemia-driven approach.
- In a meta-analysis of randomized trials, a routine invasive strategy resulted in an 18% relative reduction in death or MI, including a significant reduction in MI.
- Invasive arm was associated with higher in-hospital mortality (1.8% vs. 1.1%), but a significant reduction in post-discharge mortality (3.8% vs. 4.9%), less severe angina, fewer rehospitalizations, and an improved quality of life.


Mehta SR, Cannon CP, Fox KA, et al. Routine vs selective invasive strategies in patients with acute coronary syndromes: a collaborative meta-analysis of randomized trials. JAMA 2005;293:2908-17.

UA/NSTEMI HOSPITAL MANAGEMENT

Relative Risk for All-Cause Mortality


Early Invasive vs Conservative Therapy

Bavry AA, et al. J Am Coll Cardiol. 2006;48:1319-1325.

Benefit of Invasive Strategy by Troponin and ST Changes

Death, MI, Rehosp ACS at 6 Months

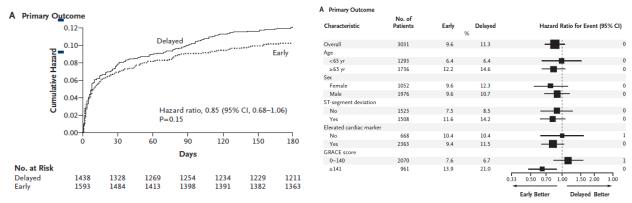
Morrow DA. JAMA. 2001;286:2405-2412; Cannon CP. N Engl J Med. 2001;344:1879-1887.

ACC/AHA UA/NSTEMI Guideline: Invasive versus Conservative Strategy

Preferred Strategy	Patient Characteristics	
	 Elevated cardiac biomarkers 	 Recurrent angina or ischemia at rest
	 New ST-segment depression 	 Ventricular tachycardia PCI within 6 months
Invasive	 HF or new or worsening mitral regurgitation 	 PCI within 6 months Prior CABG
	 High-risk findings from noninvasive testing 	 High risk score (e.g., TIMI, GRACE)
	 Hemodynamic instability 	• LVEF < 40%

	 Low risk score
Conservative	 Patient/physician preference
Conscivative	in absence of high-risk
	features

Anderson JL et al., JACC. 2007;50(7):1-157.


Early vs. Delayed Invasive Intervention in ACS TIMACS trial

N= 3,031 ACS patients -

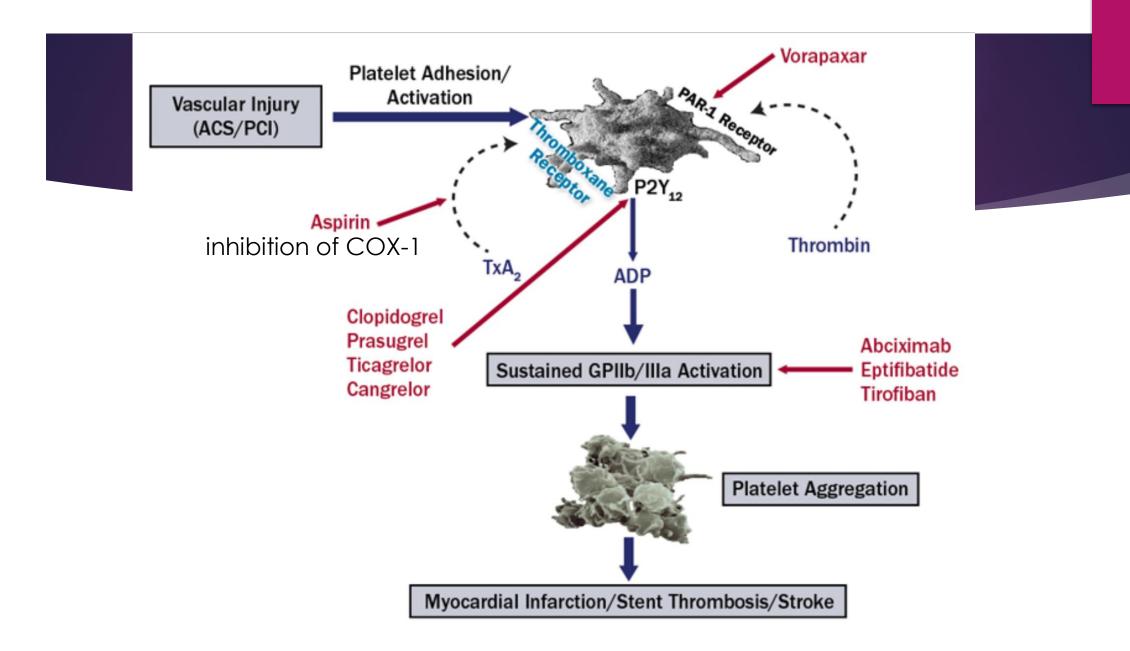
1:1 randomization ([routine/early \leq 24] vs.

[delayed \geq 36 h] invasive strategy) -

The primary outcome: 6 mo composite of death/MI/CVA

Sharma, et al. N Engl J Med 2009;360:2165.

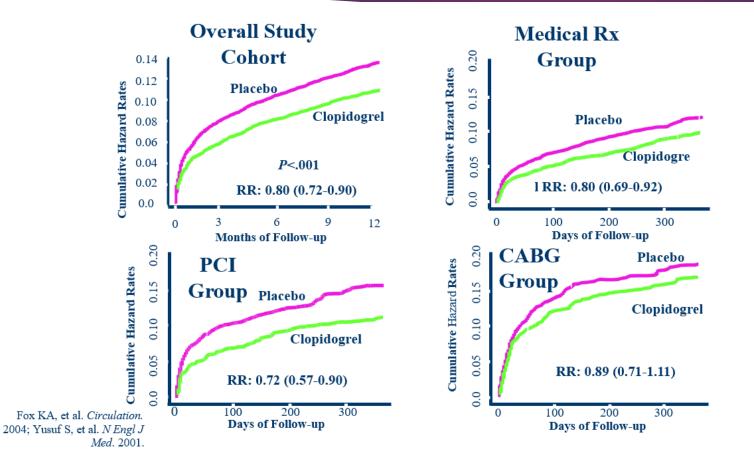
Plans are made to proceed with coronary angiography in 6 hours. What is the most appropriate initial antiplatelet/antithrombotic strategy?


- A. Aspirin + bivalirudin
- B. Aspirin + prasugrel (60 mg)
- C. Aspirin + clopidogrel
- D. Aspirin plus subcutaneous enoxaparin
- E. Aspirin + ticagrelor

Non-ST Elevation ACS

Antiplatelet Therapy

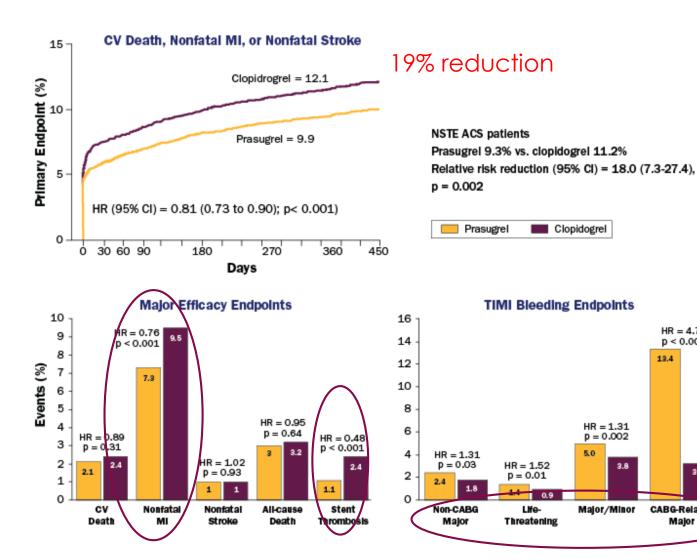
Anti-Platelet agent


- NSTE ACS is a platelet-centric disease; greater platelet inhibition is associated with reduced ischemic event occurrence
- A great clinical challenge exists to balance the risks of stent thrombosis and ischemic complications versus bleeding
- Bleeding is associated with worse clinical outcomes, and strategies to minimize its occurrence are mandatory in the care of the NSTE-ACS patient

P2Y₁₂ Receptor Blockers

Because the ADP-P2Y₁₂ interaction is pivotal for the amplification of platelet activation and stable platelet aggregation, an early focus of antithrombotic therapy is targeted inhibition of the P2Y₁₂ receptor.

CURE (Clopidogrel in Unstable Angina to Prevent Recurrent Events) study


Therapy with clopidogrel (300 mg loading dose followed by 75 mg/day) and aspirin (75-325 mg/day) in patients (n = 12,562) with NSTE ACS was associated with 20% reduction in the primary combined endpoint of 12-month CV mortality, nonfatal MI, and stroke compared with aspirin monotherapy

A significant 34% risk reduction was observed within 24 hours in the clopidogrel group and was maintained throughout the 12 months of the study period.

There was a 1% absolute risk increase (3.7% vs. 2.7%; risk reduction = 1.38%; 95% confidence interval [CI], 1.13-1.67; p = 0.001) in major bleeding and a nonsignificant increase in life-threatening and fatal bleeding.

Prasugrel: TRITON-TIMI 38 Trial

TRITON-TIMI 38 Study

A sustained reduction in the primary endpoint with prasugrel therapy compared with clopidogrel therapy (9.3% vs. 11.2%; relative risk reduction = 18.0; 95% CI, 7.3-27.4; p = 0.002) was demonstrated among patients with NSTE ACS.

Wiviott SD, Braunwald E, McCabe CH, et al.

HR = 4.73

p < 0.002

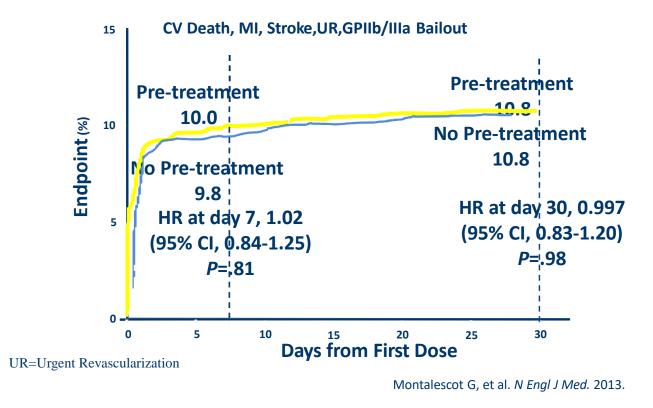
3.2

CABG-Related

Major

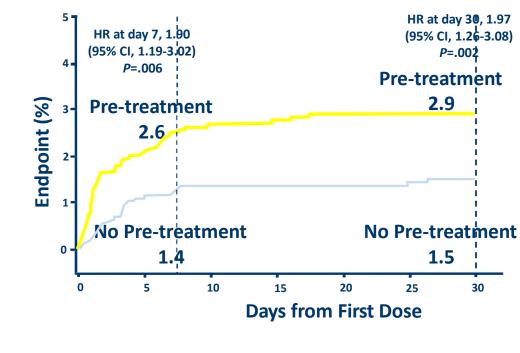
13.4

HR = 1.31


p = 0.002

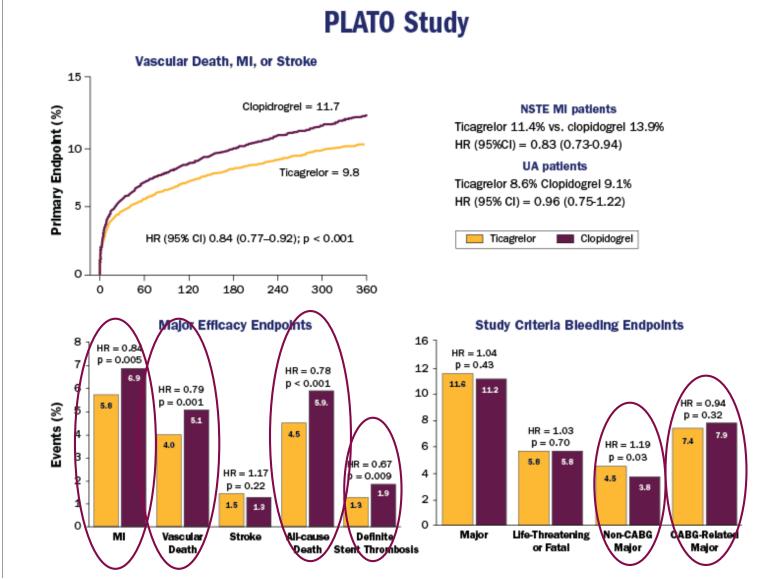
Major/Minor

3.8


5,0

ACCOAST: Primary Efficacy Endpoint

In the ACCOAST trial, treatment with prasugrel in NSTEMI before PCI did not reduce ischemic events


ACCOAST: Primary Safety Endpoint

Montalescot G, et al. N Engl J Med. 2013.

In the ACCOAST trial, treatment with prasugrel in NSTEMI before PCI was associated with more bleeding

PLATO (Platelet Inhibition and Patient Outcomes) trial

Ticagrelor therapy was associated

with a significant reduction in the

compared with clopidogrel at 30

the superiority of ticagrelor was

with a 16% relative risk reduction

(9.8% vs. 11.7%, respectively; p <

4.0% ticagrelor; p = 0.001) and MI

days (4.8% vs. 5.4%; p = 0.045), and

maintained throughout 12 months,

0.001). CV death (5.1% clopidogrel;

(6.9% clopidogrel; 5.8% ticagrelor; p

= 0.005) but not stroke (1.5% vs. 1.3%,

p = 0.22) were significantly reduced

by ticagrelor treatment

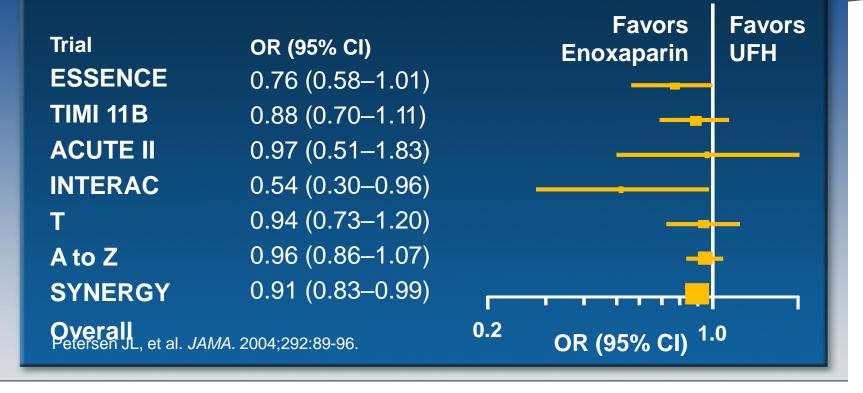
primary efficacy endpoint

Summary of anti-platelet agents

Indication	Clopidogrel	Prasugrel	Ticagrelor
Elective PCI	\checkmark	No	No
STEMI PPCI	\checkmark	\checkmark	\sim
STEMI Lytics	\checkmark	No	No
NSTE ACS			
Invasive	√ (600 mg)		
Pre-treat?	\checkmark	No	+/-
Conservative	√ (300 mg)	No	
Triple therapy		No	No

GP IIb/IIIa Summary

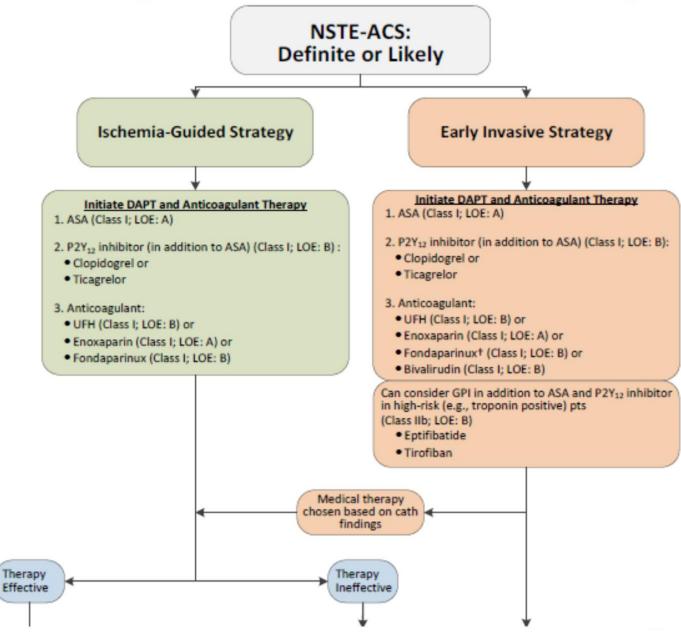
- Selected use in high risk patients in whom early invasive strategy is planned
 - cath lab initiation (IIa) now preferable to upstream (IIb)
- Avoid in medically treated pts
- Avoid upstream use in low risk pts
- Avoid with bivalirudin
- Beware of relative contraindications!

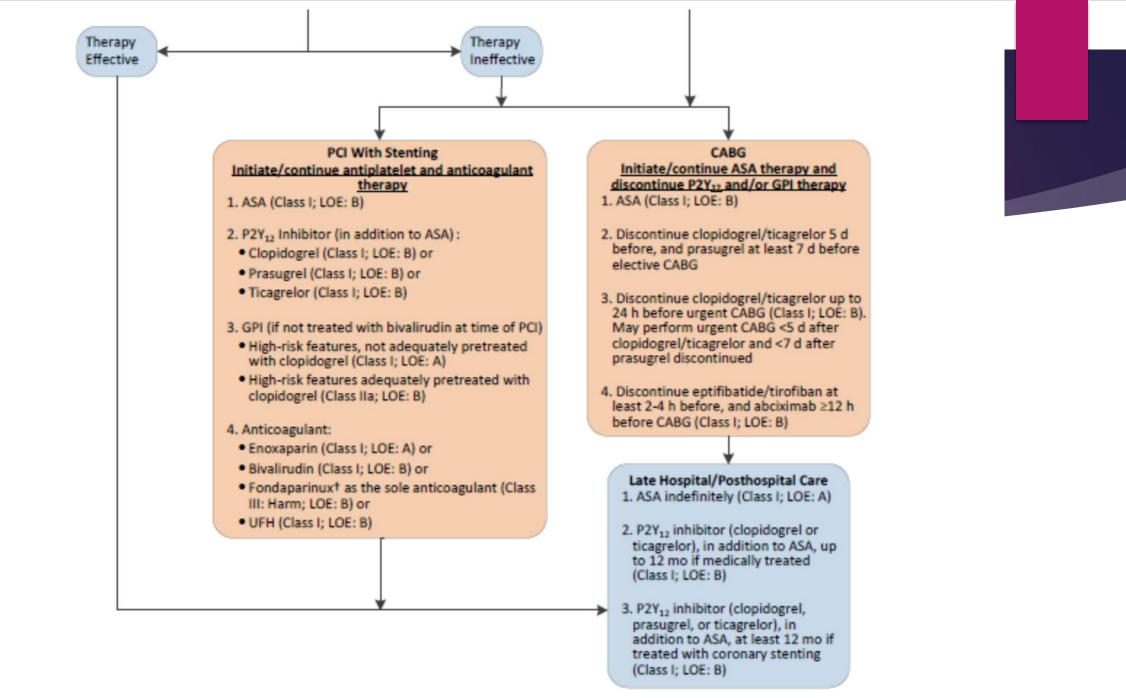

Non-ST Elevation ACS

Anticoagulant Therapy

ACC/AHA UA/NSTEMI Guideline: Initial Anticoagulant Algorithm in Invasive and Conservative Strategies

Diagnosis of UA/NSTEMI likely/definite				
Select management strate	ду			
Invasive strategy Acceptable options:	Conservative strategy Acceptable options:			
enoxaparin or UFH (I LOE A) or	enoxaparin or UFH (I LOE A)			
bivalirudin (I LOE B)	or fondaparinux (I LOE B) but			
	enoxaparin or fondaparinux are preferable (IIa)			


Enoxaparin vs Unfractionated Heparin in UA/NSTEMI: A Systematic Overview (N=21,946) Death or MI at 30 Days (ITT*)


Cangrelor

- Parenterally administered adenosine triphosphate analog with a short half-life (3-6 minutes), with rapid onset/offset of action and dose-dependent and predictable pharmacodynamic effect
- ► Cangrelor is still awaiting FDA approval as an adjunct to PCI.

Algorithm for Management of Patients With Definite or Likely NSTE-ACS

Bonus Question:

A 26/M, Good Past health,

Presents to the emergency department with sudden-onset severe substernal chest pain that began 15 minutes prior to presentation

PE:

His pupils are dilated, heart rate is 105 bpm, and blood pressure is 163/106. He was started on nitroglycerin, but has persistent chest pain.

An electrocardiogram shows ST depressions in leads V_3 - V_6 .

Which of the following medications would be appropriate to administer?

- A. Naloxone
- B. Dabigatran
- C. Metoprolol
- D. Lorazepam
- E. Flumazenil

- Benzodiazepines with or without nitroglycerin may be used to manage hypertension and tachycardia in patients who present with non-ST elevation acute coronary syndromes (NSTE-ACS) and signs of acute cocaine or methamphetamine intoxication.
- For STE-ACS, lorazepam would be the most reasonable choice of the options listed, although the primary focus would be on emergent coronary angiography and percutaneous coronary intervention, if indicated.
- Beta-blockers should not be administered to patients with ACS with a recent history of cocaine or methamphetamine use who demonstrate signs of acute intoxication due to the risk of potentiating coronary spasm

Thank you